The Explorable Virtual Human

Victor M. Spitzer Karl D. Reinig

Virtual Anatomy Over the Internet

- Digitized cryosectioned data is like crude oil. It is beautiful to many but not particularly useful until it has been refined.
- Our goal is to create and deliver virtual anatomy to present and future health care providers.
- The internet is a powerful delivery tool for virtual anatomy

Virtual Anatomy is a Moving Target

- Constantly Improving Segmentation
- Continued Diversity (Gender, Age, Race and Body Habitus)
- Improving Resolution and Tissue Contrast
- Adding Pathologies, Functionality, Physiology

Development and Validation of Knee Anatomy Curriculum

- Nora Hebert and Ruth Heisler, anatomists, and Lucy Eisenhart, instructional designer, developed knee anatomy curriculum
- Tim Weston of Alliance for Technology, Learning, and Society (ATLAS) headed tests of the EVH on students at red rocks community college and the University of Colorado at Boulder

What We Have Learned

- Physicians and anatomists are eager for virtual anatomy
- Today's consumer graphics cards can handle today's virtual anatomy
- The internet is not particularly 3-D friendly
- Neuroradiologists can write robust complex code

Some JAVA Concerns

- Easily Decompiled, Making it Difficult to Protect Proprietary Data
- Not Completely Cross Platform
- Extra Layer of Indirection, Garbage Collection for Example, is a Major Nuisance
- Significant Memory Overhead

The Explorable Virtual Human (EVH)

- The EVH is an authoring and display tool for delivering virtual anatomic curriculum over the internet.
- The EVH requires high-bandwidth but is highly tolerant of latency and other instantaneous interruptions such as packet loss, making it practical for the NGI of today and the near future.

EVH Objectives

- Development of a Network EVH
- Introduce EVH into Anatomy Curriculum
- Assessment for Graduate and Undergraduate Anatomy Students
- Augmentation of EVH for Surgical Simulation

Visible Human Data

- Just a set of pictures?
- Alpha masks give geometric definition

Segmentation and Classification

- Tedious work
- Laplacian Of the Gaussian (LOG) filter can help

Volume Visualization Methods

Ray-tracing

Polygonal Texture-Mapped Models

Making Polygonal Models

"Marching Cubes: A High Resolution 3D Surface Construction Algorithm", William E. Lorensen and Harvey E. Cline, Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No. 4, pp. 163-169.

The Need for Edge Sharing Information

Our Method For Making Polygons

- Alpha data is by nature discrete
- If the smoothing can be accomplished after the polygons are made, then the algorithm for producing polygons is simple: Each voxel face that is not adjacent to a voxel of the same type is given a two triangle representation

Our Method For Making Polygons

Adjacent Structures

- Adjacent structures share surfaces in one of two ways
 - They slide along each other
 - They join each other
- Many structure pairs do both
 - How they share effects the topology

Defining Edge Sharing Types

Edge Sharing Table

Smooth and Disjoint

The EVH as a Display Tool

- HTML
 - Text
 - Audio
 - Movies
 - Links
- Interactive Anatomic Animations (IAAs)
- Haptics

The EVH as an Authoring Tool

- Create/Edit
 - -IAAs
 - HTML
- Create and Import Sound Clips
- Import Movies

IAA Editing

- Select Structures
- WYSIWYG Spline Path Camera Motion
- Toggle
 - Transparency
 - Highlighting
 - Visibility
- 3-D Painting

Editing

3-D Painting Allows Delineation of Surface Features

Questions Are Added that Depend On the 3-D Surface Painting

Soft Tissue Deformation

Haptics

- Haptics Run in Native Code (C++)
- Supports Either GHOST or Our Own API
- See Video

Hardware Controlled Knee Joint (HCKJ)

- An Input Device for Simulated Arthroscopy
- Measure:
 - Flexion
 - Varus / Valgus Forces
 - Tibial Internal / External Rotation

Hardware Controlled Knee Joint (HCKJ)

HCKJ Hardware

HCKJ Electronics

Latest Incarnation

The Next Step

Derivative Applications

- Interactive Atlas (Obliquemaker)
- Multimedia for the VH Dissector M
- Clinical Specialty Projects

On-Line Interactive Atlas

VH Dissector ™

Explaining Subtleties of the Flexion Axis

Sacral Stimulation

Sacral Stimulator Simulator

Sacral Stimulator Simulator

Neurosurgery Simulator

Significant Impact On

- Anatomy Medical & Undergraduate
 Education
- Orthopaedics TKA basic research
- Orthopaedics Surgical Simulation
- Urology Sacral Stimulation Simulation
- Gastroenterology Planer Anatomy
- Neurology Needle Insertion Simulation

Where Must We Go From Here

- Develop anatomy curriculum for the rest of the body.
- Develop an economic model for delivering this to the health professional world.
- Grow from anatomy to medicine!